post details Download-Datasheets-8051-Microcontrollers-8051-89C51-89C52-AT89C51-AT89C52-89S51-89S52-AT89S51-Microcontrollers | Free-Datasheet-Atmel-NXP-ARM-8-BIt-Microcontrollers
Free Download Datasheet For 8051 Microcontrollers
Paris
Download Datasheet 8051 Microcontroller Family Models
 
Atmel, NXP, Philips, 8051, 8052, 89C51, 89C52, 89S51, 89s52, 89C1051, 89C1051, 89C2051, AT89C4051, AT89S8252,l AT89C1051, AT89C2051, AT89C4051,P89C51RB+, P89C51RC+, P89C51RD+, P89C51RB2Hxx, P89C51RC2Hxx, P89C51RD2Hxx, P89C660, P89C662, P89C664, P89C668, P89C669, P89C51RA2xx, P89C51RB2xx, P89C51RC2xx, P89C51RD2xx, P89C60X2, P89C61X2,P89LV51RB2, P89LV51RC2, P89LV51RD2, P89V51RB2, P89V51RC2, P89V51RD2, P89V660, P89V662, P89V664.
 
 Download Datasheet 8051 Core Microcontrollers :
A datasheet, data sheet or specification sheet is a document explaining the features of any products and performance and other technical characteristics of a product, component specially electronic component, a subsystem or computer software. It is the extended detail of the product so that the design engineer and develop can learn the component and use them in their product development.
 
About 8051 Core Microcontrollers :
The Philips 80C51/87C51/80C52/87C52 is a high-performance static 80C51 design fabricated with Philips high-density CMOS technology with operation from 2.7 V to 5.5 V. The 8xC51 and 8xC52 contain a 128 × 8 RAM and 256 × 8 RAM respectively, 32 I/O lines, three 16-bit counter/timers, a six-source, four-priority level nested interrupt structure, a serial I/O port for either multi-processor communications, I/O expansion or full duplex UART, and on-chip oscillator and clock circuits. In addition, the device is a low power static design which offers a wide range of operating frequencies down to zero. Two software selectable modes of power reduction—idle mode and power-down mode are available. The idle mode freezes the CPU while allowing the RAM, timers, serial port, and interrupt system to continue functioning. The power-down mode saves the RAM contents but freezes the oscillator, causing all other chip functions to be inoperative. Since the design is static, the clock can be stopped without loss of user data and then the execution resumed from the point the clock was stopped.
 
Ground: 0 V reference.
 
Power Supply: The power supply voltage for normal, idle, and power-down operation.
 
Port 0: Port 0 is an open-drain, bidirectional I/O port with Schmitt trigger inputs. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification and received code bytes during EPROM programming. External pull-ups are required during program verification.
 
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger inputs. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: IIL). Port 1 also receives the low-order address byte during program memory verification. Alternate functions for Port 1 include:
 
T2 (P1.0): Timer/Counter 2 external count input/clock out (see Programmable Clock-Out)
T2 (P1.0): Timer/Counter 2 external count input/clock out (see Programmable Clock-Out)
 
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger inputs. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: II). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register. Some Port 2 pins receive the high order address bits during EPROM programming and verification.
 
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups and Schmitt trigger inputs. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: II). Port 3 also serves the special features of the 80C51 family.